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Overview

Agenda:

@ Simple (univariate) linear regression
@ OLS estimation

o Statistical inference

Readings:
@ ISLR Ch.3, section 3.1
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Motivation

The simplest parametric form for the relationship between Y and X is
E[YIX] = F(X) = o+ BiXa + BaXo + ...+ BpXp

In most scenarios this is very far away from being realistic. Why do we still use it?
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Motivation

The simplest parametric form for the relationship between Y and X is
E [Y|X] = f(X) = BO + ﬂlxl + B2X2 +...+ 6po
In most scenarios this is very far away from being realistic. Why do we still use it?

@ Straightforward interpretation
@ Quick estimation on datasets of any scale

o Well-defined statistical properties

3/22
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Advertising Data
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Linear Regression in Marketing

@ Is there a relationship between advertising budget and sales?
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@ Is there a relationship between advertising budget and sales?
@ How strong is the relationship between advertising budget and sales?
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Linear Regression in Marketing

@ Is there a relationship between advertising budget and sales?
@ How strong is the relationship between advertising budget and sales?
@ Which media contribute to sales?

@ How accurately can we predict future sales?
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Linear Regression in Marketing

Is there a relationship between advertising budget and sales?
How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we predict future sales?

Is the relationship linear?

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression | 5/22



Linear Regression in Marketing

Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we predict future sales?

Is the relationship linear?

Is there synergy among the advertising media?
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Simple Linear Regression

@ We start with a model with only one input variable:

Y =fo+ X +e
E[e|X] =0

where By and (31 are unknown constant parameters that represent the intercept and the slope of
our regression function f(X), and € is the error term.
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Simple Linear Regression

@ We start with a model with only one input variable:

Y =fo+ X +e
E[e|X] =0

where By and (31 are unknown constant parameters that represent the intercept and the slope of
our regression function f(X), and € is the error term.

@ Based on our data of n pairs of {x;,y;}, we need to come up with an estimated relationship of
Yi = Bo + Bixi

where y; is our prediction of Y based on the value X = x;.

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression |

6/22



Simple Linear Regression

@ We start with a model with only one input variable:

Y =fo+ X +e
E[e|X] =0

where By and (31 are unknown constant parameters that represent the intercept and the slope of
our regression function f(X), and € is the error term.

@ Based on our data of n pairs of {x;,y;}, we need to come up with an estimated relationship of
Yi = Bo + Bixi
where y; is our prediction of Y based on the value X = x;.

@ What estimation method can we use?
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. Motivation |
Estimation of SLR

o The difference e; = y; — y; represents the ith residual or prediction error of our estimated model.
Then MSE of our estimates 3y, 51 is

MSE(ﬂo, 51 Z € Z (y,- —Bo— 31X1)2

i=1
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o The difference e; = y; — y; represents the ith residual or prediction error of our estimated model.
Then MSE of our estimates 3y, 51 is

MSE(ﬂo, 51 Z € Z (y,- —Bo— 31X1)2

i=1

@ Classic Econometrics ditches the averaging and uses the residual sum of squares (RSS) as the loss
function:

RSS(B\O;B\l) =n- MSE(B\(),B\;[) = Ze? —>£n|£1
i=1 Bo,B1
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. Motivation |
Estimation of SLR

o The difference e; = y; — y; represents the ith residual or prediction error of our estimated model.
Then MSE of our estimates 3y, 51 is

MSE(ﬂo, 51 Z € Z (y,- —Bo— 31X1)2

i=1

@ Classic Econometrics ditches the averaging and uses the residual sum of squares (RSS) as the loss
function:

RSS(B\O;B\l) =n- MSE(B\(),B\;[) = Ze? —>£n|£1
i=1 Bo,B1

@ The values of Eo, Bl that minimize RSS are known as ordinary least squares (OLS) estimates.
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|
Example: Advertising Data
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Goodness-of-fit

@ One can show that ANOVA (analysis-of-variance) decomposition of our model is

Z(Yi -y’ = Z(?’ —Vi)?+ Z e
=—

TSS ESS RSS

where total sum of squares TSS of y; is partitioned into explained sum of squares ESS and
unexplained (residual) sum of squares RSS
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@ One can show that ANOVA (analysis-of-variance) decomposition of our model is

Z(Yi -y’ = Z(?’ —Vi)?+ Z e
=—

TSS ESS RSS

where total sum of squares TSS of y; is partitioned into explained sum of squares ESS and
unexplained (residual) sum of squares RSS

@ Fraction of variation in y; explained by our estimated model is called R-squared:

ESS RSS

2 BEoo . Roo
RiTSS ! TSS
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Goodness-of-fit

@ One can show that ANOVA (analysis-of-variance) decomposition of our model is

Z(Yi -y’ = Z(?’ —Vi)?+ Z e
=—

TSS ESS RSS

where total sum of squares TSS of y; is partitioned into explained sum of squares ESS and
unexplained (residual) sum of squares RSS

@ Fraction of variation in y; explained by our estimated model is called R-squared:

ESS RSS

2 BEoo . Roo
RiTSS ! TSS

2

o The name comes from the fact that in SLR R2 = r2 = Corr (xi, yi)
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Statistical inference

@ OLS estimates have closed-form solutions:

E_Ei—zl(,-"x_il(_x,-x )(yxi)z_” o=y =P

where ¥ and X are sample means of y; and x;
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Statistical inference

@ OLS estimates have closed-form solutions:

E_Ei_zl(,f_il(—xfx)(f);y) o=y -4

where ¥ and X are sample means of y; and x;

@ Are 3y and f3; random variables? Are 8y and (3; random variables?

e Each sample {x;, y;}7_; comes from the same population, described by population regression
function f(X) with population parameters Sy and f3.
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Statistical inference

@ OLS estimates have closed-form solutions:

E_Ei_zl(,fl(_xfx)(f);y) o=y -4

where ¥ and X are sample means of y; and x;

@ Are 3y and f3; random variables? Are 8y and (3; random variables?

e Each sample {x;, y;}7_; comes from the same population, described by population regression
function f(X) with population parameters Sy and f3.

@ Our sample estimates [y, 81 will be different for each sample we draw from population, because
even with exactly same values of x; our sample will have random values of ¢; as part of y;.
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Exact Statistical Inference

@ Formula for 81 can be rewritten as

Z?:l(xi — X)ei

S N e

with conditional mean of 31 given our sample being

> i (i = X)E[€i]X]
Y (% = X)?

E [Eﬂx} =p1+
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Exact Statistical Inference

@ Formula for 81 can be rewritten as

Z?:l(xi — X)ei

S N e

with conditional mean of 31 given our sample being

> i (i = X)E[€i]X]
Y (% = X)?

@ Under our zero conditional mean assumption E [¢;| X] = 0 we get

E [Eﬂx} =p1+

E {§1|X} =p = E [31} =1

and

Bo=7—Hx = E{B\o] = fo
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Exact Statistical Inference

e Under ZCM assumption and linear parametric form of f(X) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.
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Exact Statistical Inference

e Under ZCM assumption and linear parametric form of f(X) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.

@ What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

Var(Bi|X) = Var (51 + Zzzn—l(())'

12 /22
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Exact Statistical Inference

e Under ZCM assumption and linear parametric form of f(X) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.

@ What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

~ S (X — X)e o?
2 (xi = %)? 2 (xi =%)?
@ The formula above is valid only under the i.i.d. assumption for our data — i.e. that all our

observations are identical independent draws from the same population. This ensures that
regression errors ¢; are homoscedastic with the same constant variance Var(e;|X) = o2 and serially
uncorrelated with Cov(e;, ;| X) = 0.
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Exact Statistical Inference

e Under ZCM assumption and linear parametric form of f(X) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.

@ What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

2

n —

Yo (xi — X)ej ‘X) B o

~r [ _=v2 =< . _=v»

2 (i = X)? 2ima (i —X)?

@ The formula above is valid only under the i.i.d. assumption for our data — i.e. that all our
observations are identical independent draws from the same population. This ensures that
regression errors €; are homoscedastic with the same constant variance Var(e;|X) = o2 and serially
uncorrelated with Cov(e;, ;| X) = 0.

@ What do violating these assumptions cause?

Var(Bl|X) = Var (51 +
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Homoskedasticity vs heteroskedasticity

Figure: homoskedasticity

Figure: heteroskedasticity
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Exact Statistical Inference

@ The formula for variance of 3; can be rewritten as

o2

Vaf(BﬂX) = Tr(x)

@ It means that variation (spread) of OLS estimate /3; can be measured as a ratio of noise o over
signal n- Var(X).
e Variance goes down if we have larger sample size or when X varies a lot (or both).
e Variance goes up if unobserved error term ¢; has higher degree of uncertainty.
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Exact Statistical Inference

@ The formula for variance of 3; can be rewritten as

o2

Vaf(BﬂX) = Wr(x)

@ It means that variation (spread) of OLS estimate /3; can be measured as a ratio of noise o over
signal n- Var(X).
e Variance goes down if we have larger sample size or when X varies a lot (or both).
e Variance goes up if unobserved error term ¢; has higher degree of uncertainty.

o It can be shown that under Var(¢;|X) = 02 OLS is BLUE — Best (i.e. smallest variance) Linear
Unbiased Estimator.

o In Statistics this is known as efficiency of an estimator, typically defined as having lower(-est) MSE.
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Exact Statistical Inference

@ In practice we prefer to use standard error of 3; instead of variance, as the former have the same
units of measurements as X.
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Exact Statistical Inference

@ In practice we prefer to use standard error of 3; instead of variance, as the former have the same
units of measurements as X.

@ Since we do not know true population variance o2 of our error term ¢;, we need to estimate it using
our sample OLS residuals e?:

SS —
= m and SE(Bl) =

@ The (n — 2) in denominator is called degrees of freedom of our regression model, as we have two
equations for OLS estimates that bind together 2 out of n residuals in our model.
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Exact Statistical Inference

@ In small samples we cannot say anything else about the properties of OLS estimates as random
variables unless we impose more assumption on what the nature of ¢; is.
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Exact Statistical Inference

@ In small samples we cannot say anything else about the properties of OLS estimates as random
variables unless we impose more assumption on what the nature of ¢; is.

@ That is why classic linear regression models assume that ¢; follows normal (Gaussian) distribution,
which leads OLS estimates also being normal (Gaussian):

ei ~ N(0,0%) = B; ~ N'(B;, Var(5;))
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Exact Statistical Inference

@ In small samples we cannot say anything else about the properties of OLS estimates as random
variables unless we impose more assumption on what the nature of ¢; is.

@ That is why classic linear regression models assume that ¢; follows normal (Gaussian) distribution,
which leads OLS estimates also being normal (Gaussian):

ci ~ N(0,0%) = B; ~ N(8;, Var(53)))
@ This allows us to compute confidence intervals and do hypothesis testing using the fact that

B, B
SE(5)

~ th_2

16 /22
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Exact Statistical Inference

e A (1 — )% confidence interval for 3, takes the form of
B — 5, - SE(Br): Br + 5 - SE(B)|

where t<, is a critical value of t-distribution with n — 2 degrees of freedom, equal to (1 — a/2)%
percentile.

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression | 17 /22



Exact Statistical Inference

e A (1 — )% confidence interval for 3, takes the form of
B — 5, - SE(Br): Br + 5 - SE(B)|

where t<, is a critical value of t-distribution with n — 2 degrees of freedom, equal to (1 — a/2)%
percentile.

@ In repeated sampling and estimation of this confidence interval, in (1 — @)% of cases, the true 51
will lie in those intervals
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Exact Statistical Inference

e A (1 — )% confidence interval for 3, takes the form of
B — 5, - SE(Br): Br + 5 - SE(B)|

where t<, is a critical value of t-distribution with n — 2 degrees of freedom, equal to (1 — a/2)%
percentile.

@ In repeated sampling and estimation of this confidence interval, in (1 — @)% of cases, the true 51
will lie in those intervals

o For advertising data, the 95% confidence interval for 31 in regression of Sales on TV is
approximately [0.042;0.053].
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Exact Statistical Inference

@ The most common hypothesis test in regression analysis involves testing the null hypothesis of
Ho : There is no relationship between X and Y
versus the alternative hypothesis of

H, : There is some relationship between X and Y
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Exact Statistical Inference

@ The most common hypothesis test in regression analysis involves testing the null hypothesis of
Ho : There is no relationship between X and Y
versus the alternative hypothesis of
H, : There is some relationship between X and Y
o Mathematically, this corresponds to testing
Ho:81 =0 wversus Ha:pB1#0

since if 81 = 0 our model reduces to Y = 3y + ¢, and there is no association of X with Y.
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Exact Statistical Inference

@ In classic regression analysis this hypothesis is known as significance test — it tests for (absence of
) statistically significant linear relationship between Y and X.

@ To test this hypothesis we compute a t-statistic via

b= 0
SE)

which under Hy has a t-distribution with n — 2 degrees of freedom
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Exact Statistical Inference

@ In classic regression analysis this hypothesis is known as significance test — it tests for (absence of
) statistically significant linear relationship between Y and X.

@ To test this hypothesis we compute a t-statistic via

b= 0
SE)

which under Hy has a t-distribution with n — 2 degrees of freedom

o Finally we either compare it to a critical value for a given significance level o (e.g. t<, ~ 2 for
a = 5%), or compute the p-value of our hypothesis — probability of observing any value equal to
[t] or larger.
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Exact Statistical Inference

o Example using advertising data:

Variable Coefficient SE t  p-value
Intercept 7.0325 0.4578 15.36 <0.0001
TV 0.0475 0.0027 17.67 <0.0001

R*=0.612 & =3.26
Sales - sales in thousands of units, TV - TV ad budget in thousands of $.
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Exact Statistical Inference

o Example using advertising data:

Variable

Coefficient SE t  p-value

Intercept
TV

7.0325 0.4578 15.36 <0.0001
0.0475 0.0027 17.67 <0.0001

R2=0.612 5 =3.26

Sales - sales in thousands of units, TV - TV ad budget in thousands of $.

o Both coefficients are statistically significant on any reasonable significance level a.
e On average and other things equal, extra $1000 spent on TV ads is associated with extra 47 units

sold across all markets.
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Exact Statistical Inference

o Example using advertising data:

Variable Coefficient SE t  p-value
Intercept 7.0325 0.4578 15.36 <0.0001
TV 0.0475 0.0027 17.67 <0.0001

R*=0.612 & =3.26
Sales - sales in thousands of units, TV - TV ad budget in thousands of $.

o Both coefficients are statistically significant on any reasonable significance level a.
e On average and other things equal, extra $1000 spent on TV ads is associated with extra 47 units
sold across all markets.

@ All these conclusions are only valid because we made the following assumption:

€| X ~ N(0,0?)
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Asymptotic (large sample) inference

@ Normality of ¢; is a very strong assumption, which often is unrealistic or even mathematically
infeasible.
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Asymptotic (large sample) inference

@ Normality of ¢; is a very strong assumption, which often is unrealistic or even mathematically
infeasible.

@ Good news — in large samples we can replace this assumption with asymptotic equivalent using
such powerful statistical results as Law of Large Numbers (LLN) and Central Limit Theorem
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Asymptotic (large sample) inference

@ Normality of ¢; is a very strong assumption, which often is unrealistic or even mathematically
infeasible.

@ Good news — in large samples we can replace this assumption with asymptotic equivalent using
such powerful statistical results as Law of Large Numbers (LLN) and Central Limit Theorem

@ LLN: Let Xi, X5, X5....X,, be i.i.d. random variables with a finite expected value EX; = p < oo.
Then for an ¢

lim P(IX — | > ) =0 (1)
plim(X) = (2)
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Asymptotic (large sample) inference

@ Normality of ¢; is a very strong assumption, which often is unrealistic or even mathematically
infeasible.

@ Good news — in large samples we can replace this assumption with asymptotic equivalent using
such powerful statistical results as Law of Large Numbers (LLN) and Central Limit Theorem

@ LLN: Let Xi, X5, X5....X,, be i.i.d. random variables with a finite expected value EX; = p < oo.
Then for an ¢

lim P(X — ] > ) =0 (1)
n—o00
plim(X) = (2)
o CLT: Let Xy, X5, X3....X,, be i.i.d. random variables from the same distribution with mean x and
variance o2

Xns00 ™ N(p, Uz/n) (3)
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Asymptotic (large sample) inference

@ While these results still require certain assumptions to hold, their key advantage is that given large
enough dataset, we can obtain near exact inference without the need to do repeated sampling.
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Asymptotic (large sample) inference

@ While these results still require certain assumptions to hold, their key advantage is that given large
enough dataset, we can obtain near exact inference without the need to do repeated sampling.

@ LLN allows us to establish consistency of OLS estimates:
— LS (i —X)e; Cov(X,€)
li = pli n Lai=1I\T IR SEVAR S
Plim{fa) = plim <61 ! (i = x)? ALt Var(X) b

where the last step is due to E[¢|X] = 0.
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Asymptotic (large sample) inference

@ While these results still require certain assumptions to hold, their key advantage is that given large
enough dataset, we can obtain near exact inference without the need to do repeated sampling.

@ LLN allows us to establish consistency of OLS estimates:

z<>>:5+c<x>zﬁ

I. - — |.

Plim(@) = plm <61 " Iy —x)? Var(X)
where the last step is due to E[¢|X] = 0.

o CLT allows us to establish asymptotic normality of OLS estimates:

~

=

_BJ,fJ 0.1
SE(B 04

~—
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Asymptotic (large sample) inference

@ While these results still require certain assumptions to hold, their key advantage is that given large
enough dataset, we can obtain near exact inference without the need to do repeated sampling.

@ LLN allows us to establish consistency of OLS estimates:

z<>>:5+c<x>zﬁ

I. - — |.

Plim(@) = plm <61 " Iy —x)? Var(X)
where the last step is due to E[¢|X] = 0.

o CLT allows us to establish asymptotic normality of OLS estimates:

@ The rest of the inference (Cls, hypothesis testing) can be performed in the same exact way.
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