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Overview

Agenda:
Simple (univariate) linear regression

OLS estimation

Statistical inference

Readings:
ISLR Ch.3, section 3.1
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Motivation

Motivation

The simplest parametric form for the relationship between Y and X is

E [Y |X ] = f (X ) = β0 + β1X1 + β2X2 + . . .+ βpXp

In most scenarios this is very far away from being realistic. Why do we still use it?

Straightforward interpretation
Quick estimation on datasets of any scale
Well-defined statistical properties
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Motivation

Advertising Data
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Motivation

Linear Regression in Marketing

Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?
How accurately can we predict future sales?
Is the relationship linear?
Is there synergy among the advertising media?
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Motivation

Simple Linear Regression

We start with a model with only one input variable:

Y = β0 + β1X + ϵ

E [ϵ|X ] = 0

where β0 and β1 are unknown constant parameters that represent the intercept and the slope of
our regression function f (X ), and ϵ is the error term.

Based on our data of n pairs of {xi , yi}, we need to come up with an estimated relationship of

ŷi = β̂0 + β̂1xi

where ŷi is our prediction of Y based on the value X = xi .

What estimation method can we use?

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 6 / 22



Motivation

Simple Linear Regression

We start with a model with only one input variable:

Y = β0 + β1X + ϵ

E [ϵ|X ] = 0

where β0 and β1 are unknown constant parameters that represent the intercept and the slope of
our regression function f (X ), and ϵ is the error term.

Based on our data of n pairs of {xi , yi}, we need to come up with an estimated relationship of
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Motivation

Estimation of SLR

The difference ei = yi − ŷi represents the ith residual or prediction error of our estimated model.
Then MSE of our estimates β̂0, β̂1 is

MSE (β̂0, β̂1) =
1
n

n∑
i=1

e2
i =

1
n

n∑
i=1

(
yi − β̂0 − β̂1xi

)2

Classic Econometrics ditches the averaging and uses the residual sum of squares (RSS) as the loss
function:

RSS(β̂0, β̂1) = n ·MSE (β̂0, β̂1) =
n∑

i=1

e2
i → min

β̂0,β̂1

The values of β̂0, β̂1 that minimize RSS are known as ordinary least squares (OLS) estimates.
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Motivation

Example: Advertising Data
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Motivation

Goodness-of-fit

One can show that ANOVA (analysis-of-variance) decomposition of our model is∑
(yi − y i )

2︸ ︷︷ ︸
TSS

=
∑

(ŷi − y i )
2︸ ︷︷ ︸

ESS

+
∑

e2
i︸ ︷︷ ︸

RSS

where total sum of squares TSS of yi is partitioned into explained sum of squares ESS and
unexplained (residual) sum of squares RSS

Fraction of variation in yi explained by our estimated model is called R-squared :

R2 =
ESS
TSS

= 1 − RSS
TSS

The name comes from the fact that in SLR R2 = r2 = Ĉorr
2
(xi , yi )
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Motivation

Statistical inference

OLS estimates have closed-form solutions:

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
β̂0 = y − β̂1x

where y and x are sample means of yi and xi

Are β0 and β1 random variables? Are β̂0 and β̂1 random variables?
Each sample {xi , yi}ni=1 comes from the same population, described by population regression
function f (X ) with population parameters β0 and β1.

Our sample estimates β̂0, β̂1 will be different for each sample we draw from population, because
even with exactly same values of xi our sample will have random values of ϵi as part of yi .
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Motivation

Exact Statistical Inference

Formula for β̂1 can be rewritten as

β̂1 = β1 +

∑n
i=1(xi − x)ϵi∑n
i=1(xi − x)2

with conditional mean of β̂1 given our sample being

E
[
β̂1|X

]
= β1 +

∑n
i=1(xi − x)E [ϵi |X ]∑n

i=1(xi − x)2

Under our zero conditional mean assumption E [ϵi |X ] = 0 we get

E
[
β̂1|X

]
= β1 ⇒ E

[
β̂1

]
= β1

and
β̂0 = y − β̂1x ⇒ E

[
β̂0

]
= β0
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Motivation

Exact Statistical Inference

Under ZCM assumption and linear parametric form of f (X ) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.

What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

Var(β̂1|X ) = Var

(
β1 +

∑n
i=1(xi − x)ϵi∑n
i=1(xi − x)2

∣∣∣X) =
σ2∑n

i=1(xi − x)2

The formula above is valid only under the i.i.d. assumption for our data — i.e. that all our
observations are identical independent draws from the same population. This ensures that
regression errors ϵi are homoscedastic with the same constant variance Var(ϵi |X ) = σ2 and serially
uncorrelated with Cov(ϵi , ϵj |X ) = 0.
What do violating these assumptions cause?

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 12 / 22



Motivation

Exact Statistical Inference

Under ZCM assumption and linear parametric form of f (X ) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.
What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

Var(β̂1|X ) = Var

(
β1 +

∑n
i=1(xi − x)ϵi∑n
i=1(xi − x)2

∣∣∣X) =
σ2∑n

i=1(xi − x)2

The formula above is valid only under the i.i.d. assumption for our data — i.e. that all our
observations are identical independent draws from the same population. This ensures that
regression errors ϵi are homoscedastic with the same constant variance Var(ϵi |X ) = σ2 and serially
uncorrelated with Cov(ϵi , ϵj |X ) = 0.
What do violating these assumptions cause?

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 12 / 22



Motivation

Exact Statistical Inference

Under ZCM assumption and linear parametric form of f (X ) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.
What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

Var(β̂1|X ) = Var

(
β1 +

∑n
i=1(xi − x)ϵi∑n
i=1(xi − x)2

∣∣∣X) =
σ2∑n

i=1(xi − x)2

The formula above is valid only under the i.i.d. assumption for our data — i.e. that all our
observations are identical independent draws from the same population. This ensures that
regression errors ϵi are homoscedastic with the same constant variance Var(ϵi |X ) = σ2 and serially
uncorrelated with Cov(ϵi , ϵj |X ) = 0.

What do violating these assumptions cause?

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 12 / 22



Motivation

Exact Statistical Inference

Under ZCM assumption and linear parametric form of f (X ) OLS estimates are unbiased — on
average across repeated samples we get the true parameters’ values.
What about accuracy/spread across repeated sample? Since OLS estimates are unbiased, their
MSE is equal to their variance:

Var(β̂1|X ) = Var

(
β1 +

∑n
i=1(xi − x)ϵi∑n
i=1(xi − x)2

∣∣∣X) =
σ2∑n

i=1(xi − x)2

The formula above is valid only under the i.i.d. assumption for our data — i.e. that all our
observations are identical independent draws from the same population. This ensures that
regression errors ϵi are homoscedastic with the same constant variance Var(ϵi |X ) = σ2 and serially
uncorrelated with Cov(ϵi , ϵj |X ) = 0.
What do violating these assumptions cause?

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 12 / 22



Motivation

Homoskedasticity vs heteroskedasticity

Figure: homoskedasticity
Figure: heteroskedasticity
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Motivation

Exact Statistical Inference

The formula for variance of β̂1 can be rewritten as

Var(β̂1|X ) =
σ2

n · V̂ar(X )

It means that variation (spread) of OLS estimate β̂1 can be measured as a ratio of noise σ2 over
signal n · V̂ar(X ).

Variance goes down if we have larger sample size or when X varies a lot (or both).
Variance goes up if unobserved error term ϵi has higher degree of uncertainty.

It can be shown that under Var(ϵi |X ) = σ2 OLS is BLUE — Best (i.e. smallest variance) Linear
Unbiased Estimator.
In Statistics this is known as efficiency of an estimator, typically defined as having lower(-est) MSE.
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Motivation

Exact Statistical Inference

In practice we prefer to use standard error of β̂1 instead of variance, as the former have the same
units of measurements as X.

Since we do not know true population variance σ2 of our error term ϵi , we need to estimate it using
our sample OLS residuals e2

i :

σ̂2 =
RSS

n − 2
and SE(β̂1) =

√
σ̂2∑n

i=1(xi − x)2

The (n − 2) in denominator is called degrees of freedom of our regression model, as we have two
equations for OLS estimates that bind together 2 out of n residuals in our model.
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Motivation

Exact Statistical Inference

In small samples we cannot say anything else about the properties of OLS estimates as random
variables unless we impose more assumption on what the nature of ϵi is.

That is why classic linear regression models assume that ϵi follows normal (Gaussian) distribution,
which leads OLS estimates also being normal (Gaussian):

ϵi ∼ N (0, σ2) ⇒ β̂j ∼ N (βj ,Var(β̂j))

This allows us to compute confidence intervals and do hypothesis testing using the fact that

β̂j − βj

SE (β̂j)
∼ tn−2
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Motivation

Exact Statistical Inference

A (1 − α)% confidence interval for β1 takes the form of[
β̂1 − tcritn−2 · SE(β̂1); β̂1 + tcritn−2 · SE(β̂1)

]
where tcritn−2 is a critical value of t-distribution with n − 2 degrees of freedom, equal to (1 − α/2)%
percentile.

In repeated sampling and estimation of this confidence interval, in (1 − α)% of cases, the true β1
will lie in those intervals
For advertising data, the 95% confidence interval for β1 in regression of Sales on TV is
approximately [0.042; 0.053].
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Motivation

Exact Statistical Inference

The most common hypothesis test in regression analysis involves testing the null hypothesis of

H0 : There is no relationship betweenX andY

versus the alternative hypothesis of

HA : There is some relationship betweenX andY

Mathematically, this corresponds to testing

H0 : β1 = 0 versus HA : β1 ̸= 0

since if β1 = 0 our model reduces to Y = β0 + ϵ, and there is no association of X with Y .

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 18 / 22



Motivation

Exact Statistical Inference

The most common hypothesis test in regression analysis involves testing the null hypothesis of

H0 : There is no relationship betweenX andY

versus the alternative hypothesis of

HA : There is some relationship betweenX andY

Mathematically, this corresponds to testing

H0 : β1 = 0 versus HA : β1 ̸= 0

since if β1 = 0 our model reduces to Y = β0 + ϵ, and there is no association of X with Y .

ML in Economics | Cappelllo | Fall 24 Module 1: Linear Regression I 18 / 22



Motivation

Exact Statistical Inference

In classic regression analysis this hypothesis is known as significance test — it tests for (absence of
) statistically significant linear relationship between Y and X .
To test this hypothesis we compute a t-statistic via

t =
β̂1 − 0

SE (β̂1)

which under H0 has a t-distribution with n − 2 degrees of freedom

Finally we either compare it to a critical value for a given significance level α (e.g. tcritn−2 ≈ 2 for
α = 5%), or compute the p-value of our hypothesis — probability of observing any value equal to
|t| or larger.
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Motivation

Exact Statistical Inference

Example using advertising data:
Variable Coefficient SE t p-value
Intercept 7.0325 0.4578 15.36 <0.0001
TV 0.0475 0.0027 17.67 <0.0001

R2 = 0.612 σ̂ = 3.26

Sales - sales in thousands of units, TV - TV ad budget in thousands of $.

Both coefficients are statistically significant on any reasonable significance level α.
On average and other things equal, extra $1000 spent on TV ads is associated with extra 47 units
sold across all markets.

All these conclusions are only valid because we made the following assumption:

ϵi |X ∼ N (0, σ2)
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Motivation

Asymptotic (large sample) inference

Normality of ϵi is a very strong assumption, which often is unrealistic or even mathematically
infeasible.

Good news — in large samples we can replace this assumption with asymptotic equivalent using
such powerful statistical results as Law of Large Numbers (LLN) and Central Limit Theorem

LLN: Let X1,X2,X3....Xn be i.i.d. random variables with a finite expected value EXi = µ < ∞.
Then for an ϵ

lim
n→∞

P(|X̄ − µ| ≥ ϵ) = 0 (1)

plim(X̄ ) = µ (2)

CLT: Let X1,X2,X3....Xn be i.i.d. random variables from the same distribution with mean µ and
variance σ2

X̄n→∞ ∼ N (µ, σ2/n) (3)
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Motivation

Asymptotic (large sample) inference

While these results still require certain assumptions to hold, their key advantage is that given large
enough dataset, we can obtain near exact inference without the need to do repeated sampling.

LLN allows us to establish consistency of OLS estimates:

plim(β̂1) = plim

(
β1 +

1
n

∑n
i=1(xi − x)ϵi

1
n

∑n
i=1(xi − x)2

)
= β1 +

Cov(X , ϵ)

Var(X )
= β1

where the last step is due to E [ϵ|X ] = 0.
CLT allows us to establish asymptotic normality of OLS estimates:

β̂j − βj

SE (β̂j)

a∼ N (0, 1)

The rest of the inference (CIs, hypothesis testing) can be performed in the same exact way.
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